If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying mx2 + (2m + -1) * x + (m + -1) = 0 Reorder the terms: mx2 + (-1 + 2m) * x + (m + -1) = 0 Reorder the terms for easier multiplication: mx2 + x(-1 + 2m) + (m + -1) = 0 mx2 + (-1 * x + 2m * x) + (m + -1) = 0 Reorder the terms: mx2 + (2mx + -1x) + (m + -1) = 0 mx2 + (2mx + -1x) + (m + -1) = 0 Reorder the terms: mx2 + 2mx + -1x + (-1 + m) = 0 Remove parenthesis around (-1 + m) mx2 + 2mx + -1x + -1 + m = 0 Reorder the terms: -1 + m + 2mx + mx2 + -1x = 0 Solving -1 + m + 2mx + mx2 + -1x = 0 Solving for variable 'm'. Move all terms containing m to the left, all other terms to the right. Add '1' to each side of the equation. -1 + m + 2mx + mx2 + 1 + -1x = 0 + 1 Reorder the terms: -1 + 1 + m + 2mx + mx2 + -1x = 0 + 1 Combine like terms: -1 + 1 = 0 0 + m + 2mx + mx2 + -1x = 0 + 1 m + 2mx + mx2 + -1x = 0 + 1 Combine like terms: 0 + 1 = 1 m + 2mx + mx2 + -1x = 1 Add 'x' to each side of the equation. m + 2mx + mx2 + -1x + x = 1 + x Combine like terms: -1x + x = 0 m + 2mx + mx2 + 0 = 1 + x m + 2mx + mx2 = 1 + x Reorder the terms: -1 + m + 2mx + mx2 + -1x = 1 + x + -1 + -1x Reorder the terms: -1 + m + 2mx + mx2 + -1x = 1 + -1 + x + -1x Combine like terms: 1 + -1 = 0 -1 + m + 2mx + mx2 + -1x = 0 + x + -1x -1 + m + 2mx + mx2 + -1x = x + -1x Combine like terms: x + -1x = 0 -1 + m + 2mx + mx2 + -1x = 0 The solution to this equation could not be determined.
| 5=x/4=1 | | 16=-10b+3b | | x^3-5x=-3 | | -8x-8=9x+43 | | 8(y-1)+5(y-1)= | | 5x+9y=-42 | | 2(x+6)-4(-x+3)=3(2x+1)-3 | | 2b*b*3a= | | -3x+2y=-34 | | -8(-x)-4(x-2)=8 | | 3S+45=10 | | 4(y-3)+3=8(2y+5) | | (3x-2y)+8=-15 | | 3x+6(-1)=-30 | | -1x+14= | | 3x^4+x^3+3x^2-29x-10=0 | | 5w+-2.5=-7.5 | | g-2=1/4(4g-2) | | 2B+40=240 | | x^3-7x^2+17x+5=0 | | 17x-9[x+4]=3x-26 | | 0.054x^2+x-0.4=0 | | 14=9+-x | | 14310=5.0625*h*3.14 | | 72-4-14d=36 | | 121.1=1.3-4d | | Tgx=0.04 | | 0=(X-54166)/10200 | | -3a^8+2a^6-a^2= | | 14310=5.0625*h*3.13 | | 3x+35x=15x+51 | | K^2x^2+2(x+1)x+4=0 |